A GRILIFE RESEARCH

Regenerative Agriculture and Nutrient Management

Mid-Plains AG EXPO Plainview, TX 18 January 2024

Katie Lewis Associate Professor Soil Chemistry and Fertility Joseph Burke Assistant Professor Cropping Systems Agronomy

Farmer Concerns

Costs UAN-32: \$0.90/lb N Urea: \$0.75/lb N

Fertilizer Prices (2022 → 2023)

Fertilizer	09/02/2022	11/01/2023
Urea	\$804/ton	\$573/ton 29%
Anhydrous Ammonia	\$1,364/ton	\$830/ton 39%
UAN-32	\$671/ton	\$415/ton 389
MAP	\$1,022/ton	\$802/ton 22%
DAP	\$952/ton	\$714/ton 25%
10-34-0	\$866/ton	\$613/ton 29%
0-0-60	\$877/ton	\$509/ton 42%

Our project goal is to intensify agricultural production in an environmentally sustainable manner that enhances agronomic, economic, and community resiliency in the Southern Great Plains.

USDA Award Number: 2021-68012-35897

Project Overview

- The TX and OK components of the Southern Great Plains are one of the largest cotton and livestock production regions in the U.S. and vital to the economic, ecologic, and social facets of rural America
- Knowledge gaps exist when using regenerative agriculture in semi-arid agroecosystems, such as the Southern Great Plains
- Without a better understanding of regenerative agriculture, adoption will remain limited across the region, and the following will be inevitable:
 - 1. depletion of water resources
 - 2. diminishing soil C storage
 - 3. net positive production of greenhouse gases
 - 4. increased contribution to climate change
 - 5. diminishing profit potential

Regenerative Agriculture

The continued capacity of agricultural systems to function in a changing climate that supports soil health, communities, economic output, environmental sustainability, and resilience to the outside threats of these outcomes. –RegenAg Team

Regenerative Agriculture (#RegenAg)

Objectives -

Develop and deliver *Master Soil Steward Program*

Utilize models to assess soil and water quality impacts of regenerative practices

Evaluate regenerative agricultural practices

Develop and deliver transdisciplinary graduate and undergraduate curriculum

Create farm budgets and determine potential impacts on rural communities

-ammonium (NH_4^+) & nitrate (NO_3^-)-

Nitrogen Requirements (based on yield goal)

1st bale: 40 lb N/A/bale

2+ bales: 35-40 lb N/A/bale

<u>Nitrogen Uptake</u>

Source: Pabuayon et al. 2021

	Nutrient u	Yield increase per	
	(lb nutrient per	unit of nutrient since	
Macronuthent	Old Cultivars ^a	Madarn Cultivard	the 1990s
			(%)
Ν	20	12	73
Р	2.5	1.3	92
K	15	10	61
Са	9	7	26
Mg	2.6	2.0	30
S	2.7	2.2	23

^a Values based on the report by Mullins and Burmester (1990)

^b Values based on the mean two modern cotton cultivars (FM 958 and DP 1646)

<u>Nitrogen Uptake</u>

Mineralization and Immobilization

Organic N ↔ Inorganic N Equilibrium in soils (Nitrogen cycling)

<u>*Mineralization*</u> – conversion of plant-unavailable <u>organic N</u> to plantavailable <u>inorganic N</u> (NH_4^+); C:N < 30:1

<u>Immobilization</u> – conversion of plant-available inorganic N (NH_4^+ , NO_3^-) to plant-unavailable organic N (microbial tissues); C:N > 30:1

Practical significance??

Determining Factor for Net N Mineralization or Immobilization

Time required for completion of N immobilization as affected by C:N ratio of crop residue

Our sites

<u>Cropping system location -</u> Agricultural Complex for Advanced Research and Extension Systems (AG-CARES) - Lamesa, TX

<u>Native system location -</u> Wellman native range site – near Wellman, TX

Soil type at both sites:

 Amarillo fine sandy loam (fineloamy, mixed, superactive, thermic Aridic Paleustalf)
 80% sandy, 9% silt, and 11% clay

The experimental design

Research plot design at Ag-CARES in Lamesa, TX

Evaluated systems

Continuous cotton systems – (est. 1998)

- Conventional tillage, winter fallow (CT)
- No-tillage, Rye cover (R-NT), 40 lb ac.⁻¹
- No-tillage, Mixed cover (M-NT), 40 lb ac⁻¹
 - Rye (50%)
 - Austrian Winter Pea (33%)
 - Hairy Vetch (10%)
 - Radish (7%)
 - by weight
 - Established in November 2014
 - NRCS recommended mixture

Native Systems (NAT)

 Rangeland - historical record indicates it unplowed at least 80 years

Depths: 0-2.5, 2.5-5, 5-12, 12-30, and 30-40"

The field methods

Biomass decomposition

75-mesh litterbags retrieved at 0, 4, 8, 16, 32, 64, and 128 days, *Heath*, *1964*

Soil samples

Collected at 0-15 cm depth from directly beneath the litterbags

Cover crop biomass decomposition

Biomass decomposition - 2020

Cover	Biomass	N	Potential N		
crop	(lb ac ⁻¹)	(%)	(lb ac ⁻¹)		
Rye	4,131	3.1	128.0		
Mixed	4,068	3.0	122.1		
Potentially mineralizable N					
Mineralized N (lb ac ⁻¹)					
% Minera	lized	Rye	Mixed		

506461Will N mineralization and availability coincide with
cotton demands?

Soil nitrogen dynamics

Soil proteins = organic N • Increases in organic N result from decomposition of cover crop residues by soil microbes Those microbes will eventually make that N available to plants when they die or through mineralization, but the process is slow in semi-arid cropping regions with limited water

Soil organic carbon

а

Native

rangeland

Cropping System

Permanganate oxidizable carbon

TEXAS A&M

RESEARCH

Enzyme activities

TEXAS A&M

RESEARCH

Microbial communities

Microbial communities

100 Relative abundance (%) 80 60 40 20 0 CT R-NT M-NT NAT CT, conventional tillage winter fallow; R-NT, no-tillage rye cover;

M-NT, no-tillage mixed species cover; NAT, native rangeland

Actinomycetes
 Anaerobe

- Anaerobe
- Fungi
- Eukaryote
- ∎ AM Fungi
- Gram Positive
- Gram Negative

Relationship between cotton yield and select biological indicators of soil health

Relative abundance of soil microbial community

Yield and stability

> 1, more stable; = 1, stable; < 1, less stable

Soil Health and Nitrogen Management AG-CARES, Lamesa, TX

Source: Nutrient Management of Conservation-Till Cotton in Terminated-Wheat K.F. Bronson, J.W. Keeling, R.K. Boman, J.D. Booker, and H.A. Torbert, April 2004

Soil Health and Nitrogen Management AG-CARES, Lamesa, TX

Evaluate yield response to added N fertilizer <u>at different</u> <u>times</u> in conventional and conservation management

Managment systems

- Continuous cotton (CC)
 CC with rye cover (CCRC)
- 2. CC with tye cover (CCRC)
- 3. Wheat-fallow-cotton rotation

Nitrogen treatments

- 1. Farm Practice (120 lb N/A; 3-4 applications)
- 2. Preplant (+30 lb N/A; 150 lb N/A)
- 3. Emergence +3 wks (+30 lb N/A; 150 lb N/A)
- 4. PHS + 2 wks (+30 lb N/A; 150 lb N/A)

Cotton-Wheat Rotation (No-tillage)

> Wheat - 2016 Cotton - 2017 Wheat - 2018

Cotton - 2016 Wheat - 2017 Cotton - 2018

Cotton Yield

2018-2020 averages

Cronning	Nitrogen fertilization strategies				
System	FP	PPN	PEN	PHSN	
	L	AVG			
CC	723	787 (8.9%)	715 (-1.1%)	683 (-5.5%)	727
CCRC	806	938 (16.4%)	965 (19.6%)	857 (6.2%)	891 (23.3%)
CWR	1,134	1,032 (-9.0%)	1,117 (-1.5%)	1,064 (-6.2%)	1,087 (50.4%)
AVG	888	919 (3.5%)	932 (5.0%)	868 (-2.2%)	

Fertilization strategies:

- FP = farmers practices (120 lb N A⁻¹)
- PPN = FP + 30 lb N A⁻¹ at preplant
- PEN = FP + 30 lb N A⁻¹ at post emerg. + 2 wks
- PHSN = FP + 30 lb N A⁻¹ at pinhead square + 2 wks

Cropping systems:

- CC = Continuous cotton, conventional tillage (>25 yrs)
- CCRC = Continuous cotton-Rye cover
- CWR = Cotton-Wheat rotation

Gross Margins

2018-2020 averages

Cronning	N				
System	FP	PPN	PEN	PHSN	
	G	ross Marg	gin (\$ acr	e ⁻¹)	AVG
CC	434	489 (12.7%)	441 (1.6%)	420 (-3.3%)	336
CCRC	489	591 (20.7%)	608 (24.3%)	536 (9.5%)	556 (65.5%)
CWR	609	575 (-5.6%)	610 (0.3%)	587 (-3.6%)	595 (77.1%)
AVG	511	552 (8.0%)	553 (8.2%)	514 (0.6%)	

Fertilization strategies:

- FP = farmers practices (120 lb N A⁻¹)
- PPN = FP + 30 lb N A⁻¹ at preplant
- PEN = FP + 30 lb N A⁻¹ at post emerg. + 2 wks
- PHSN = FP + 30 lb N A⁻¹ at pinhead square + 2 wks

Cropping systems:

- CC = Continuous cotton, conventional tillage (>25 yrs)
- CCRC = Continuous cotton-Rye cover
- CWR = Cotton-Wheat rotation

Nitrogen management (2022 - 2024)

AG-CARES, Lamesa, TX

Fertility Treatment - 2022					Fertili	ty Treatment	- 2023		
	30 lb N/A PP	30 lb N/A PP	30 lb N/A PP			30 lb N/A PP	30 lb N/A PP	30 lb N/A PP	
	30 lb N/A PE	50 lb N/A PE	10 lb N/A PE	Cropping System		30 lb N/A PE	50 lb N/A PE	10 lb N/A PE	Cropping System
Cropping System	30 lb N/A PHS	10 lb N/A PHS	50 lb N/A PHS	Average	Cropping System	30 lb N/A PHS	10 lb N/A PHS	50 lb N/A PHS	Average
Conventional tillage, winter fallow					Conventional tillage, winter fallow				
DP 2141	747	804	718		DP 2143	419	427	389	
FM 2498	760	782	812	771	FM 2498	421	380	405	407
Variety Average	754	<i>793</i>	765		Variety Average	420	404	397	
No-tillage, rye cover					No-tillage, rye cover				
DP 2141	756	806	797		DP 2143	361	406	331	
FM 2498	806	784	782	788	FM 2498	391	357	385	372
Variety Average	781	795	789		Variety Average	376	382	358	
Cotton-Wheat-Fallow Rotation					Cotton-Wheat-Fallow Rotation				
DP 2141	955	977	921		DP 2143	411	424	398	
FM 2498	954	943	946	949	FM 2498	477	494	495	450
Variety Average	955	960	934		Variety Average	444	459	447	
Fertility Average	830	849	829	836	Fertility Average	413	415	401	410

Lewis et al.

Summary

- Cover crop biomass decomposition depends on herbage mass production and environmental conditions.
- Cover crop herbage mass can immobilize soil N early in the growing season.
- Supplemental N fertilization can offset immobilization and increase cotton lint yield.
- Cotton-wheat-fallow rotations may be a better alternative to cover crops in certain regions.

Nitrogen and Fertigation

Fertigation Frequency (SDI)

- Develop N and P fertigation strategies using SDI that optimize cotton lint yield and fertilizer return on investment.
- More specifically, we will determine the number of fertilizer applications that results in the greatest nutrient uptake and yield when using SDI.

Applic	Freq: 1	Applic Freq: 3 Applic Fre		Freq: 9	
2021	2022	2021	2022	2021	2022
9-May	7-Jun	9-May	7-Jun	9-May	7-Jun
				28-May	17-Jun
			24-Jun	18-Jun	24-Jun
				8-July	1-July
		20-July	8-July	20-July	8-July
				2-Aug	18-July
		11-Aug		11-Aug	29-July
				20-Aug	12-Aug
				30-Aug	26-Aug

Fertigation Frequency (SDI) *Lint yield (2021)*

Fertigation Frequency (SDI) *Lint yield (2022)*

Nitrogen Uptake and Partitioning

Phosphorus Uptake and Partitioning

Zinc Uptake and Partitioning

TEXAS A&M

RESEARCH

Take-aways

- Nitrogen is needed earlier and at smaller rates than previously reported
 - 1st bale 40 lb/acre
 - 2+ bales 35-40 lb/acre
- Following a winter cover crop, a larger percentage of N should be applied earlier in season (contradicting Extension recommendations)
- Fertigation with subsurface drip
 - N should be applied in smaller doses more frequently
 - P should be applied in larger amounts less frequently

How to make more COSTefficient fertilizer decisions?

Carbon

A

Project goal and funding support

Project goal:

Establish soil organic carbon baseline levels across Texas corn, cotton, and sorghum cropping systems

Cotton Incorporated

Targeted cropping systems

Cropping systems:

- Corn, cotton, and sorghum
- Conventional practices
- No-tillage
- Cover cropping
- Variable rate irrigation
- Livestock integration

Sampling plan

Region	Soil Series	Acres Represented
Northern High Plains	Conlen loam	501,717
	Dallam fine sandy loam	851,576
	Sherm silty clay loam	1,432,333
	Sunrayloam	500,625
Southern High Plains	Amarillo fine sandy loam	3,054,075
	Olton clay loam	1,800,547
	Pullman clay loam	3,091,530
Gulf Coast	Edroy clay	73,281
	Orelia sandy clay loam	228,130
	Raymondville clay loam	235,577
	Victoria clay	784,257
Rolling Plains	Abilene clay loam	340,476
	Miles fine sandy loam	1,439,014
	Grandfield fine sandy loam	801,794
	Rowena clay loam	492,390
Blackland Prairies	Austin silty clay	351,412
	Branyon clay	436,764
	Frio silty clay	520,407
	Houston Black clay	1,415,510
Total acres represente	d by our sampling efforts	18,412,723

Methods and deliverables

Soil sampling depths:

• 0-15, 15-30, 30-45, 45-60, 60-75, and 75-90 cm

Deliverables:

- Soil organic carbon
- Bulk density
- Routine soil analysis (0-15cm)
- Soil texture
- Soil pH and salinity
- Soil inorganic nitrogen (NO₃⁻ and NH₄⁺)

Soil organic carbon – Effect of cropping system

Soil organic C - Effect of soil type

Soil organic carbon – Effect of tillage

Soil organic carbon – Effect of cover crop

Project highlights

- Soil samples were collected from 72 farms across the Texas High Plains, Rolling Plains, Blackland Prairies, and Gulf Coast Plains, encompassing over 29.8 million acres of arable Texas.
- Soil carbon storage is primarily driven by soil texture with increased sequestration potential in more clayey soils.
- Conservation practices have a variable effect on carbon sequestration in the Texas High Plains.

Katie L. Lewis, PhD Associate Professor Soil Chemistry & Fertility 361-815-3836 katie.lewis@ag.tamu.edu

TEXAS TECH UNIVERSITY Davis College Plant & Soil Science Joseph A. Burke, PhD Assistant Professor Cropping Systems Agronomy 210-213-6494 joseph.burke@ag.tamu.edu

Funding Support -Texas State Support Committee Cotton Research and Promotion Program

USDA-NIFA Award: 2021-68012-35897

Additional Information -

txsoillab.com

TEXAS A&M

EXTENSION

Final Thoughts on Fertility

- Proactive strategies to increase fertilizer use efficiency
 - 4Rs of Nutrient Management Right Source Right Rate Right Time Right Placement
 - Fertilizer rates based on irrigation capacity, yield goals, and crop removal
 - Implementing conservation management may require adjustment of N fertilization
 - Read labels, do your own math, and keep it simple...

"Ever vigilant"

