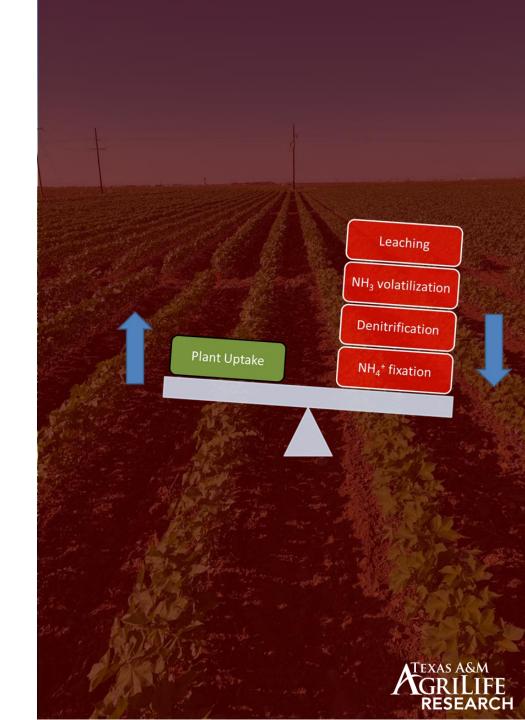
High Plains Cotton Research: **Nutrient Management and Cropping Systems** Katie Lewis, Joseph Burke, Christopher Cobos, Paul DeLaune, Wayne Keeling, Will Keeling,

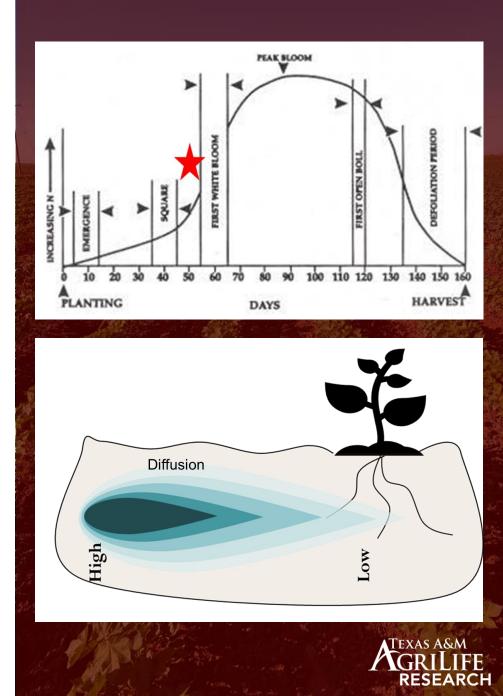
and Ray White

Cotton Physiology Conference College Station, TX Jan 31 – Feb 1, 2023

TEXAS A&M GRILIFE RESEARCH


What are the questions...

- What is the best approach to fertigation using subsurface drip irrigation?
- How to best utilize water resources?
- What is the best method to manage N following cover crops?
- How to build soil C and the health of soil in sandy, semi-arid environments?


Fertigation and SDI

- SDI can be used to efficiently apply liquid fertilizers
 - Greater plant uptake
 - Less potential negative environmental impacts due to nutrient losses
- SDI allows for more frequent applications
 - "Spoon-feeding"
- Is this the best approach with all nutrients?

Fertigation and SDI

- Spoon-feeding method may result in less chance of missing peak demand because fertilizer is constantly being applied
 - May be a better approach for N fertigation
- May lead to excessive growth due to prolonged N applications later into the season
- May result in reduced P uptake
- Research is aimed at answering the spoon-feeding questions

Fertigation: Objective

- Develop N and P fertigation strategies using SDI that optimizes cotton lint yield and fertilizer return on investment.
- More specifically, we will determine the number of fertilizer applications that results in the greatest nutrient uptake and yield when using SDI.

The experimental design

LOCATION: Lubbock, Lubbock County, TX

VARIETIES: DP 2143NR B3XF and DP 2020 B3XF

PLANTING DATE: 5/13/2021, replanted on 6/7/2021 5/27/2022 TREATMENTS (4 replications):

N P N app frequency

0

3

9

0

3

9

3

3

3

9

9

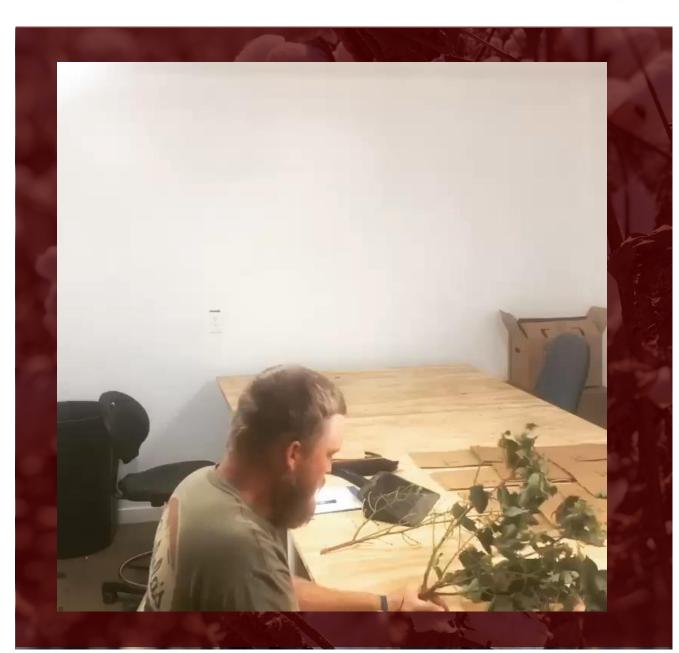
9

9

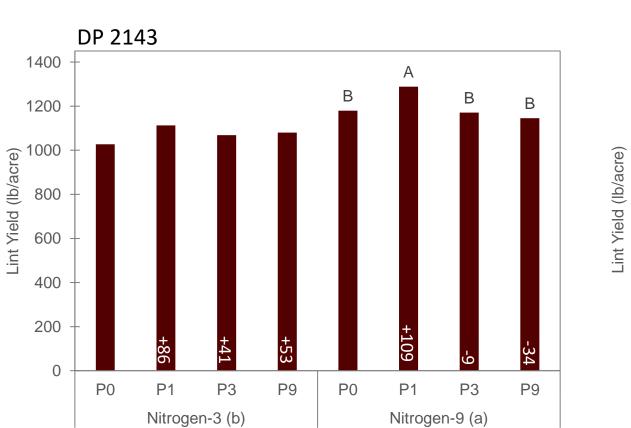
- N applied at 150 lb/a as UAN-32 P applied at 45 lb/a as 0-54-0
- Applied using chemigation pump

3x applied every 20 d 9x applied every 10 d

The experimental design

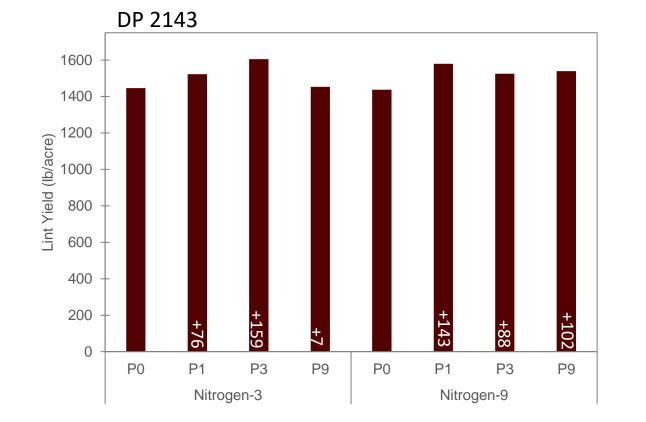

APPLICATION DATES 2021:

Applic Freq: 1		Applic Freq: 3		Applic Freq: 9	
2021	2022	2021	2022	2021	2022
9-May	7-Jun	9-May	7-Jun	9-May	7-Jun
				28-May	17-Jun
			24-Jun	18-Jun	24-Jun
				8-July	1-July
		20-July	8-July	20-July	8-July
				2-Aug	18-July
		11-Aug		11-Aug	29-July
				20-Aug	12-Aug
				30-Aug	26-Aug

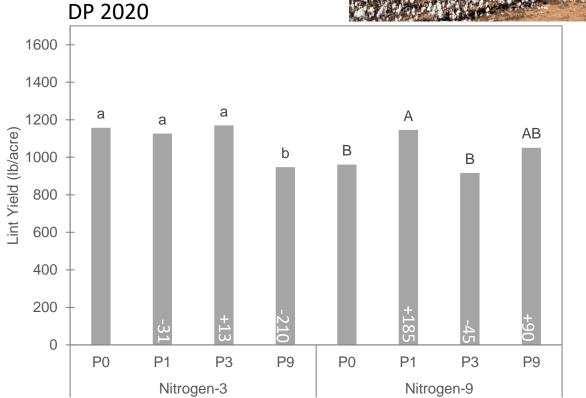


The variables

- Soil characterization
 - Samples collected at depth (0-6", 6-12", 12-24", and 24-36") prior to planting and fertilizer application
 - Elemental concentrations determined
- Plant growth and health
 - Stand establishment
 - Morphological measurements
 - NDVI
- Plant nutrient uptake
 - Plants collected at first open boll and separated into plant parts, dried, and weighed
 - Elemental concentrations determined and uptake calculated
- Lint yield and fiber quality



DP 2020



Cotton lint yield (2022)

Agronomic Use Efficiency (2021)

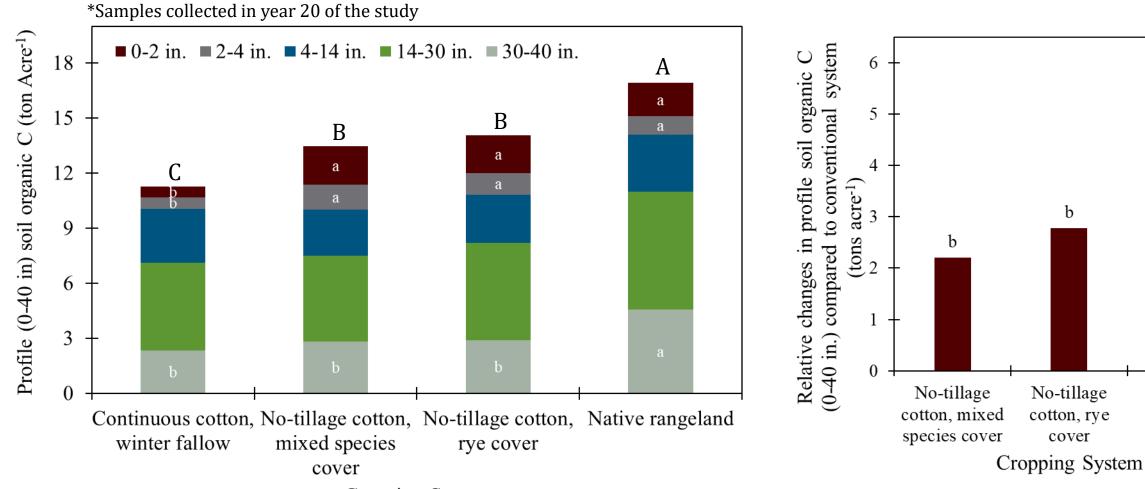
 $AUE = (LY_F - LY_0)/45 \text{ lb } P$

		AUE-P (Ib lint/Ib P)		
N	Ρ	DP 2143	DP 2020	
	1	1.90	4.08	
3	3	0.92	2.06	
	9	1.18	0.83	
	1	2.41	0.63	
9	3	-0.20	-0.87	
	9	-0.76	0.32	

Fertigation Summary

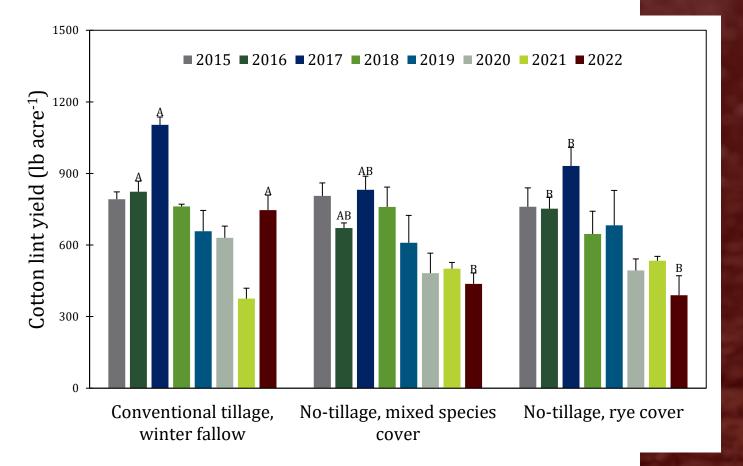
- Preliminary data suggest different management approaches needed for N and P when fertigating using SDI
- N resulted in generally greater yield response with greater frequency applications (2021)
 - Greater uptake corresponded to greater lint yield
- Greater yield response with fewer P applications
 - Uptake and recovery efficiency increased with greater frequency
 - Possibly an antagonistic effect between P and Zn uptake

Carbon, yield, and water in conservation systems


Soil organic carbon

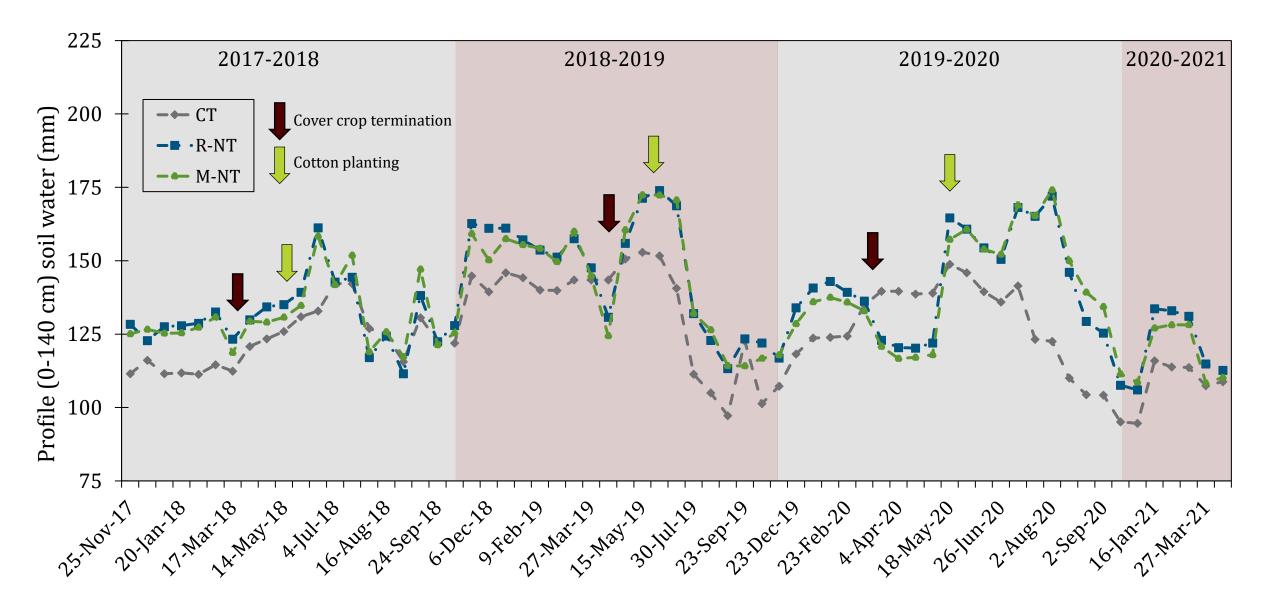
а

Native


rangeland

Cropping System

Cotton lint yield


Conservation management has a variable effect on yield

What is causing the yield drag in some years?

- Cover crop water usage?
- Nutrient immobilization?

The experimental design

Nitrogen study plot design at Ag-CARES in Lamesa, TX

Treatments

- Cropping systems
 - Conventional tillage, winter fallow (CC)
 - Continuous cotton with rye cover (CCRC)
 - Cotton-wheat-fallow rotation (CWR)
- Nitrogen applications
 - Farmer's practice (120 lb N A⁻¹, FP)
 - FP + 30 lb N A⁻¹ preplant (PPN)
 - FP + 30 lb N A⁻¹ 2-3 weeks post emergence (POS)
 - FP + 30 lb N A⁻¹ pinhead square + 2 weeks (PIN)

Cotton production

Cropping	Ni	<u> </u>	ertilizati tegies	ion	
System	FP	PPN	PEN	PHSN	
	Lint yield (lint acre ⁻¹)				AVG
CC	723	787 (8.9%)	715 (-1.1%)	683 (-5.5%)	727
CCRC	806	938 (16.4%)	965 (19.6%)	857 (6.2%)	891 (23.3%)
CWR	1,134	1,032 (-9.0%)	1,117 (-1.5%)	1,064 (-6.2%)	1,087 (50.4%)
AVG	888	919 (3.5%)	932 (5.0%)	868 (-2.2%)	

2018-2020 averages

Fertilization strategies:

- FP = farmers practices (120 lb N A⁻¹)
- PPN = FP + 20 lb N A⁻¹ at preplant
- PEN = FP + 20 lb N A^{-1} at post emerg. + 2 wks
- PHSN = FP + 20 lb N A⁻¹ at pinhead square + 2 wks

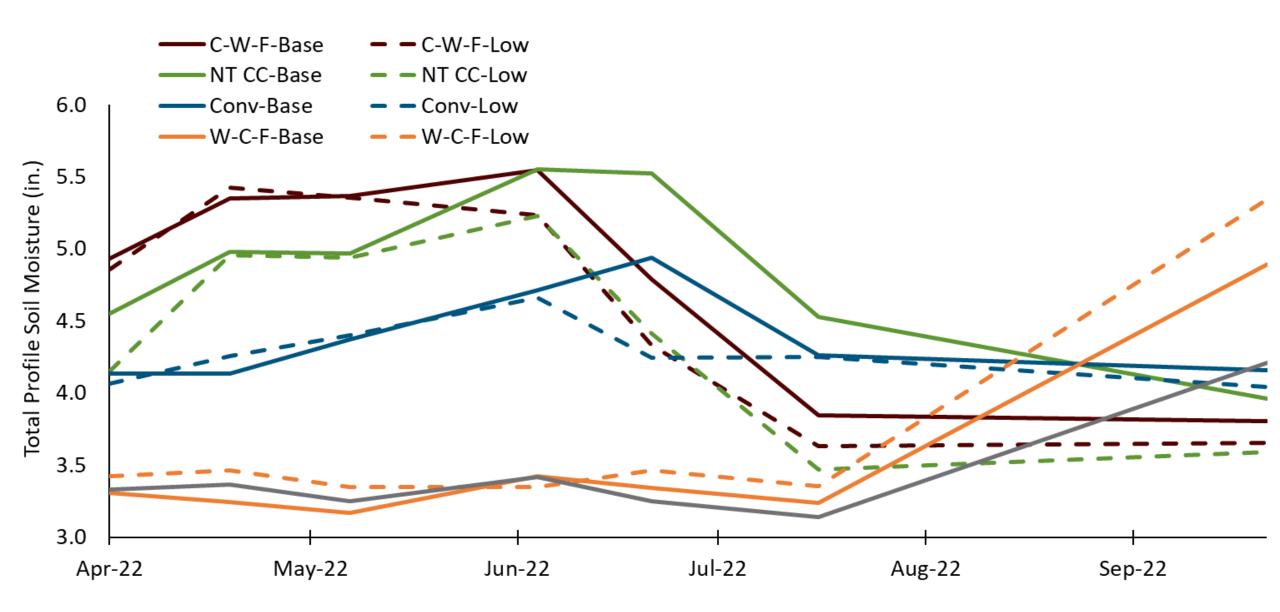
Cropping systems:

- CC = Continuous cotton, conventional tillage (>25 yrs)
- CCRC = Continuous cotton-Rye cover
- CWR = Cotton-Wheat rotation

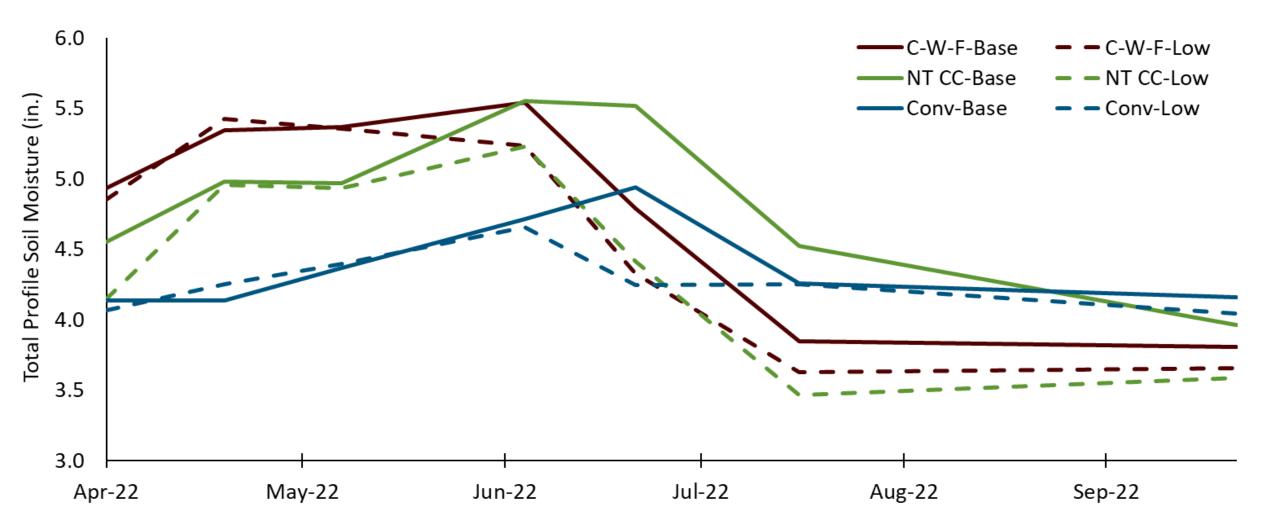
Gross margins

Cropping	Ν	itrogen f strat	ertilizat tegies	ion	
System	FP	PPN	PEN	PHSN	
	G	AVG			
CC	434	489 (12.7%)	441 (1.6%)	420 (-3.3%)	336
CCRC	489	591 (20.7%)	608 (24.3%)	536 (9.5%)	556 (65.5%)
CWR	609	575 (-5.6%)	610 (0.3%)	587 (-3.6%)	595 (77.1%)
AVG	511	552 (8.0%)	553 (8.2%)	514 (0.6%)	

2018-2020 averages

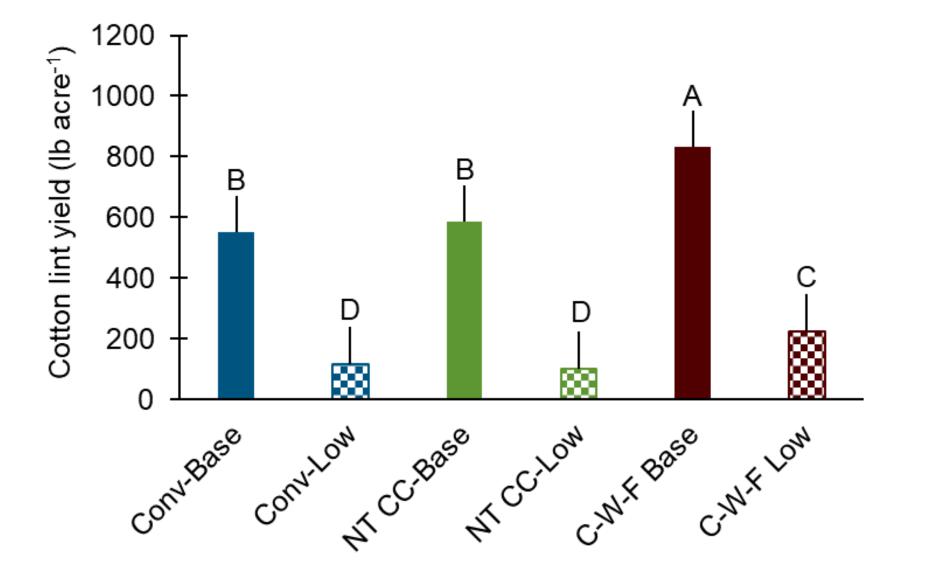

Fertilization strategies:

- FP = farmers practices (120 lb N A⁻¹)
- PPN = FP + 20 lb N A⁻¹ at preplant
- PEN = FP + 20 lb N A^{-1} at post emerg. + 2 wks
- PHSN = FP + 20 lb N A⁻¹ at pinhead square + 2 wks


Cropping systems:

- CC = Continuous cotton, conventional tillage (>25 yrs)
- CCRC = Continuous cotton-Rye cover
- CWR = Cotton-Wheat rotation

Soil water results



Soil water results

* = significant differences

Cotton lint yield

Summary & recommendations

Cotton following a cover crop benefits from additional N fertilization and added N fertilizer earlier in the growing season is most beneficial.

Cotton following wheat did not benefit from additional N fertilization to stimulate mineralization but did yield the greatest lint.

Partial budgets indicate no-tillage with cover crops or crop rotations are economical alternative to continuous cotton production on the High Plains.

Complete economic budgets are needed to understand the system. Current fertilizer prices may change the benefit of these production systems.

2023 and Beyond

Regenerative agriculture (#RegenAg)

Sustainable agricultural intensification and enhancement using regenerative agricultural practices USDA Award Number: 2021-68012-35897

Our project goal is to intensify agricultural production in an environmentally sustainable manner that enhances the agronomic, economic, and community resiliency in the Southern Great Plains.

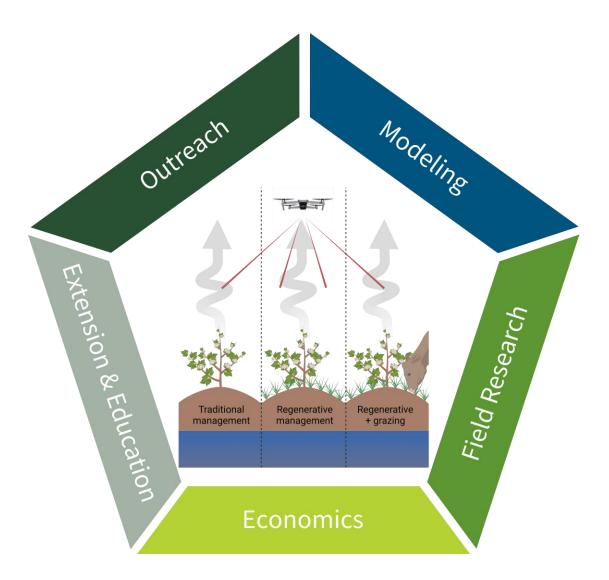
Collaborators -

Regenerative agriculture (#RegenAg)

Select objectives -

Develop and deliver *Master Soil Steward Program*

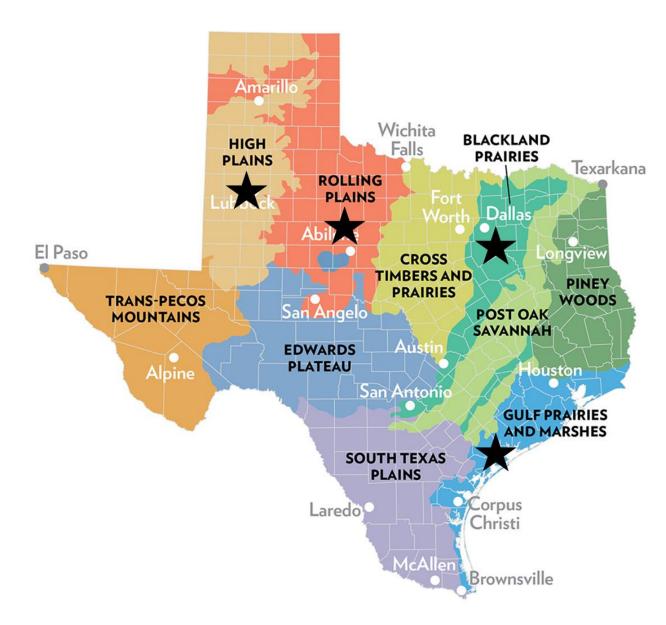
Utilize models to assess soil and water quality impacts of regenerative practices


Evaluate regenerative agricultural practices

Develop and deliver transdisciplinary graduate and undergraduate curriculum

Create farm budgets and determine potential impacts on rural communities

Regenerative agriculture (#RegenAg)

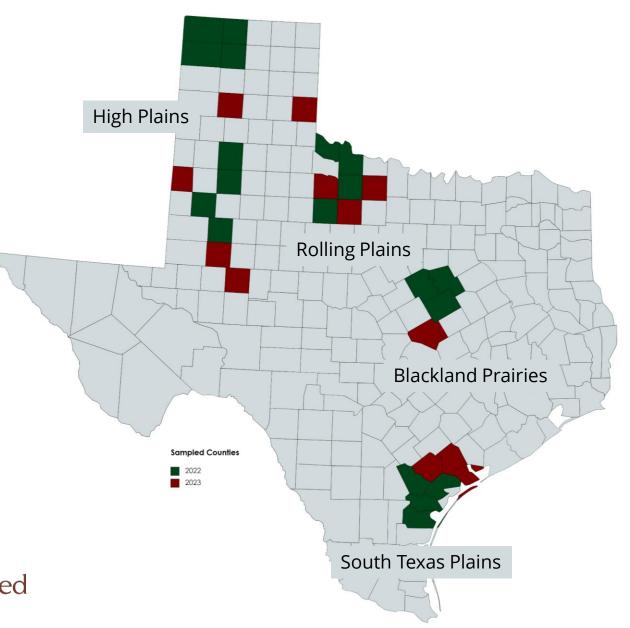

We are currently seeking producers in The Texas High and Rolling Plains and Southwestern Oklahoma

Management practices we are looking for integrated livestock grazing systems

• Cover crops in cotton monocultures

• Cotton-wheat rotations

Participating farmers will receive a detailed report of their soil and biomass results


Carbon assessment in Texas cropping systems

Project specifics:

- Establish soil organic carbon baseline levels across Texas corn, cotton, and sorghum cropping systems
- Included conservation systems:
 - No-tillage, strip-tillage, conservation tillage, conservation irrigation, cover crops, crop rotations, integrated livestock grazing
- Soil sampling depths:
 - 0-6, 6-12, 12-18, 18-24, 24-30, 30-36 inches

Collaborators:

- Paul DeLaune
- Jamie Foster
- Jourdan Bell

Carbon assessment in Texas cropping systems

Region	Soil Series	Acres Represented
Northern High Plains	Conlen loam	501,717
	Dallam fine sandy loam	851,576
	Sherm silty clay loam	1,432,333
	Sunrayloam	500,625
Southern High Plains	Amarillo fine sandy loam	3,054,075
	Olton clay loam	1,800,547
	Pullman clay loam	3,091,530
Gulf Coast	Edroy clay	73,281
	Orelia sandy clay loam	228,130
	Raymondville clay loam	235,577
	Victoria clay	784,257
Rolling Plains	Abilene clay loam	340,476
	Miles fine sandy loam	1,439,014
	Grandfield fine sandy loam	801,794
	Rowena clay loam	492,390
Blackland Prairies	Austin silty clay	351,412
	Branyon clay	436,764
	Frio silty clay	520,407
	Houston Black clay	1,415,510
Total acres represen	ted by our sampling efforts	18,412,723

			pН	Conductivity	Organic matter
Region	Soil Series	Cropping System		mmhos/cm	%
Blackland Prairies	Austin	Wheat22/Corn21	8.1	0.39	4.1
	Branyon	Sorghum22 (no-tillage)	8.2	0.16	3.3
		Wheat22 (no-tillage)	8.2	0.15	3.5
	Frio	Sorghum22 (mixed species cove	8.2	0.16	3.0
		Wheat22 (mixed species cover)	8.2	0.13	2.9
	Houston	Continous Corn	8.2	0.25	4.5
		Cotton22/Corn21	8.2	0.31	3.4
South Texas	Edroy	Corn22	6.0	0.20	1.6
	Orelia	Cotton22	6.9	0.27	1.4
	Parrita	Introduced pasture	7.0	0.37	3.4
	Raymondville	Corn22	8.2	0.36	2.1
		Cotton22/Corn21	8.2	0.28	2.2
	Victoria	Cotton22	8.1	0.40	1.8
		Cotton22 (MinTillage)	8.2	0.28	2.0
		Cotton22/Sorghum21	8.1	0.36	2.4
		Fallow22	8.2	0.46	2.1

Climate-smart agriculture in Texas

Climate-smart cotton - \$35 million

Climate-smart cotton through a sustainable and innovative supply chain approach

Collaborators: Emi Kimura, Will Keeling, Josh McGinty, and the University of Arkansas Department of Agriculture

Climate-smart sorghum - \$65 million

Conservation of natural and sustainable environmental resources with verified engagement (CONSERVE)

Collaborators: Jourdan Bell, Paul DeLaune, Kansas State University, and Oklahoma State University

2023 Texas State Support Committee Projects

Nitrogen management in conservation systems

Impact of cotton cropping systems and management strategies on the productive capacity of soil in the Texas Southern High Plains Collaborators: Wayne Keeling and Paul DeLaune

Nutrient requirements of modern cotton varieties

Nutrient accumulation and requirements of modern cotton cultivars in the Southern High Plains and Rolling Plains of Texas Collaborators: Reagan Noland

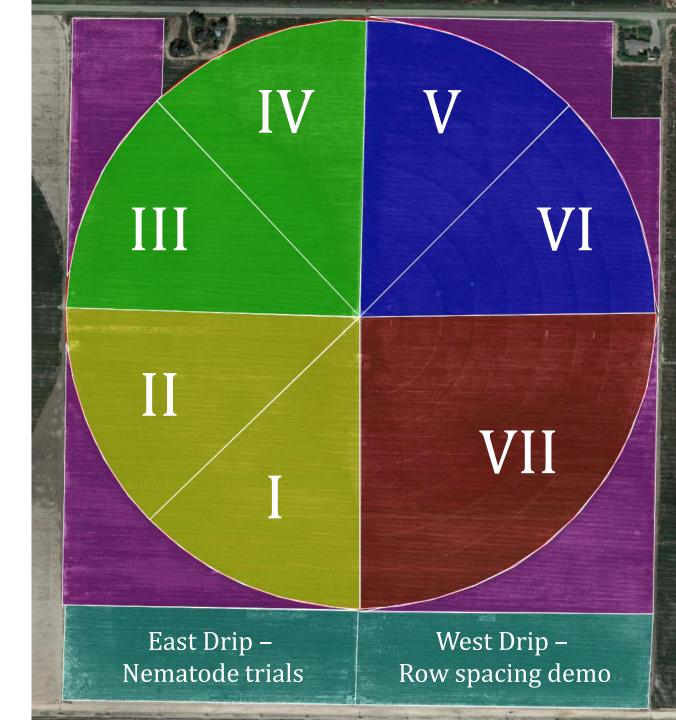
Subsurface drip irrigation fertigation strategies

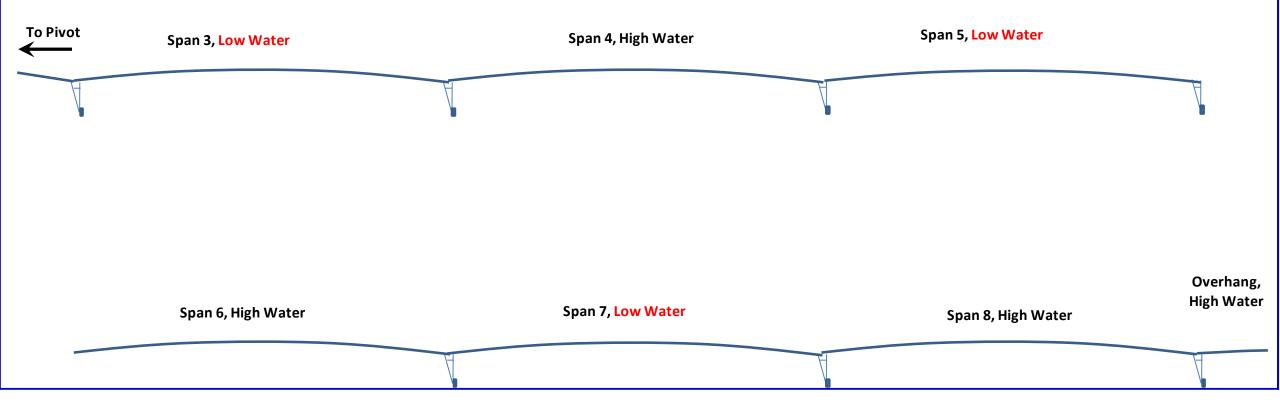
Developing a fertigation strategy for subsurface drip irrigation on Texas' Southern High Plains

Collaborations with industry

Barker Research Farm 2023 Plans


TEXAS A&M GRILIFE RESEARCH


The Barker Farm


Cropping systems

- I. Continuous cotton winter fallow, conventional tillage
- II. Continuous cotton winter cover, no-tillage
- III. Cotton ('23)-Sorghum ('24) Rotation, no-tillage
- IV. Sorghum ('23)-Cotton ('24) Rotation, no-tillage
- V. Wheat ('23)-Fallow-Cotton ('24) Rotation, no-tillage
- VI. Cotton ('23)-Wheat ('24)-Fallow Rotation, no-tillage
- VII.Continuous cotton winter fallow, conventional tillage

Irrigation management

Evapotranspiration replacement will be determined in Q2 2023 based on irrigation supply.

2023 research trials

Detailed Soil and Site Characterization Prior to System Implementation

Cotton Variety	Water x Variety Cotton	Soil Water Dynamics
Evaluation	Evaluation	within Cropping System
Row Spacing Evaluation	Pathogenic Nematode Evaluation	Cropping System Impact on Wind Erosion

Texas State Support Committee Cotton Research and Promotion Program

Katie Lewis Associate Professor katie.lewis@ag.tamu.edu Joseph Burke Postdoctoral Research Associate Joseph.burke@ag.tamu.edu

