Soil-water dynamics in semi-arid production systems

Joseph A. Burke, Ph.D. Assistant Professor | Cropping Systems Agronomy

TEXAS A&M GRILIFE RESEARCH 19 December 2023 OSU Winter Crops School Stillwater, OK

ATEXAS A&M GRILIFE EXTENSION

Regenerative agriculture on the High Plains

The continued capacity of agricultural systems to function in a changing climate that supports soil health, communities, economic output, environmental sustainability, and resilience to the outside threats of these outcomes.

Texas Agriculture

Value of Texas Agricultural Production, 2014

The Southern High Plains climate

Climate in Lamesa, TX

Potential evapotranspiration (PET)
Average annual PET exceeds precipitation by 2-3 times

Cotton agronomy timeline

Months of the Year

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Traditional cotton agronomy timeline:

Fallow	Cotton growing season	Fallow
--------	-----------------------	--------

Conservation cotton agronomy timeline:

Strategies to capture and store moisture

- Practices that are perceived to reduce the capability of soils to capture rainfall or use stored soil moisture will hinder adoption
- Retain precipitation
 - Increase infiltration, water holding capacity, residue management
- Reduce evaporation
 - Keep soil covered
- Water-use efficient crops
- Fallow periods
- Cover crops?

Our long-term system

Evaluated systems

Continuous cotton systems – (est. 1998)

- Conventional tillage, winter fallow (CT)
- No-tillage, Rye cover (R-NT), 40 lb ac.⁻¹
- No-tillage, Mixed cover (M-NT), 40 lb ac⁻¹
 - Rye (50%)
 - Austrian Winter Pea (33%)
 - Hairy Vetch (10%)
 - Radish (7%)
 - by weight
 - Established in November 2014
 - NRCS recommended mixture

Native Systems (NAT)

 Rangeland - historical record indicates it unplowed at least 80 years
 RCBD with three replications
 Plot Size (AG-CARES) – 16 rows by 200' long

Research plot design at Ag-CARES in Lamesa, TX

Herbage mass and stability

Yield and stability

> 1, more stable; = 1, stable; < 1, less stable

Soil water over time

Soil water at depth

Stages of soil water

Period of increased soil water near planting from precipitation and/or deficit irrigation

Period of decreased soil water during growing season as cotton develops vegetatively

Period of increased soil water as cotton vegetative growth and water demand decreases

Volumetric water content (θ)

Soil water and cropping systems

Cropping System

- Continuous cotton; winter fallow; conventional tillage
- II Continuous cotton; rye cover crop; notillage
- III Cotton ('22)-wheat-fallow; notillage
- ${
 m IV}_{
 m no-tillage}^{
 m Wheat-\ fallow-\ cotton\ (`23);}$
 - Wheat-summer cover-cotton ('23); no-tillage

Irrigation

- 60% estimated ET replacement
- Irrigation to achieve adequate stands with ≤ 3 in. of early season irrigation, otherwise dryland cropping system

Soil water and cropping systems

Soil water and cropping systems

Cobos et al.

* = significant differences

Soil water by system

Conventional tillage, winter fallow (Dryland)

Cotton-Wheat-Fallow rotation shows increased soil moisture in dryland agroecosystems during a drought year

Soil water by cropping system and lint yield

Cover crop termination timing

Objective:

Determine optimal cover crop termination timing in semi-arid cotton conservation systems

Cover crop termination date

Multi-spectral sUAS

Soil moisture and nutrient analysis

Plant growth characteristics

Base Irrigation Low Irrigation

2 wks	2 wks	4 wks	2 wks	Control	Control
4 wks	Control	6 wks	4 wks	2 wks	2 wks
6 wks	6 wks	Control	6 wks	4 wks	6 wks
8 wks	4 wks				
Control	4 wks	2 wks	Control	6 wks	8 wks
8 Rows					

Cover crop termination timing

Cobos et al.

Cover crop termination timing

Volumetric Water Content (cm³/cm³) 0.04 0.06 0.08 0.10

Cobos et al.

Cover crop termination timing

6 weeks prior to cotton planting

Cover crop termination timing

Volumetric

Water Content

 (cm^{3}/cm^{3})

0.04

0.06

0.08

0.10

4 weeks prior to cotton planting

Cover crop termination timing

2 weeks prior to cotton planting

No cover control

Summary

Soil moisture is reduced by cover crops, but it can be rapidly replenished with irrigation or timely rainfall

Water use following cover crops following distinct trends each year

Cotton-wheat-fallow rotations increased water storage and yield compared to continuous cotton

Terminating at 6 to 8 weeks prior to ideal cotton planting resulted in greater water at planting

THANK YOU

Joseph A. Burke Assistant Professor Cropping System Agronomy joseph.burke@ag.tamu.edu

