Nutrient cycling and crop production following cover crop termination

Joseph A. Burke, Ph.D. Assistant Professor | Systems Agronomy

20 December 2023 OSU Winter Crops School Stillwater, OK

A GRILIFE RESEARCH

The Dust Bowl and Beyond

Cover crop adoption on the Southern High Plains

Conservation management:

• Cover cropping – 7.5%

Values from 2017 Census of Agriculture

Cotton agronomy timeline

Months of the Year

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Traditional cotton agronomy timeline:

Fallow	Cotton growing season	Fallow
--------	-----------------------	--------

Conservation cotton agronomy timeline:

Cover crop season	Idle	Cotton	growing season	Cover
•	•	•		

Mineralization and immobilization

Organic N ↔ Inorganic N Equilibrium in soils

(Nitrogen cycling)

<u>*Mineralization*</u> – conversion of plant-unavailable <u>organic</u> <u>N</u> to plant-available <u>inorganic N</u> (NH₄⁺); C:N < 30:1

<u>Immobilization</u> – conversion of plant-available <u>inorganic</u> <u>N</u> (NH₄⁺, NO₃⁻) to plant-unavailable <u>organic N</u> (**microbial tissues**); C:N > 30:1

Practical significance??

Mineralization and Immobilization

AG-CARES, Lamesa, TX

Source: Nutrient Management of Conservation-Till Cotton in Terminated-Wheat K.F. Bronson, J.W. Keeling, R.K. Boman, J.D. Booker, and H.A. Torbert, April 2004

Long-term cover crop system

Research plot design at Ag-CARES in Lamesa, TX

Evaluated systems

Continuous cotton systems – (est. 1998)

- Conventional tillage, winter fallow (CT)
- No-tillage, Rye cover (R-NT), 40 lb ac.⁻¹
- No-tillage, Mixed cover (M-NT), 40 lb ac⁻¹
 - Rye (50%)
 - Austrian Winter Pea (33%)
 - Hairy Vetch (10%)
 - Radish (7%)
 - by weight
 - Established in November 2014
 - NRCS recommended mixture

Native Systems (NAT)

 Rangeland - historical record indicates it unplowed at least 80 years

Depths: 0-2.5, 2.5-5, 5-12, 12-30, and 30-40"

Herbage mass and stability

Yield and stability

> 1, more stable; = 1, stable; < 1, less stable

Soil water over time

The field methods

Biomass decomposition

75-mesh litterbags retrieved at 0, 4, 8, 16, 32, 64, and 128 days, *Heath*, *1964*

Soil samples

Collected at 0-15 cm depth from directly beneath the litterbags

Cover crop biomass decomposition

Biomass decomposition - 2020

Cover	Biomass	N	Potential N			
crop	(lb ac ⁻¹)	(%)	(lb ac ⁻¹)			
Rye	4,131	3.1	128.0			
Mixed	4,068	3.0	122.1			
Potentially mineralizable N						
Mineralized N (lb ac ⁻¹)						
% Minera	lized	Rye	Mixed			

506461Will N mineralization and availability coincide with
cotton demands?

Soil nitrogen dynamics

Soil proteins = organic N • Increases in organic N result from decomposition of cover crop residues by soil microbes Those microbes will eventually make that N available to plants when they die or through mineralization, but the process is slow in semi-arid cropping regions with limited water

Economics

Management	Input	Lint Revenue			Gr			
System	Cost*	2015	2016	2017	2015	2016	2017	AVG
		\$/acre\$						
Conv. Tillage	84	412	428	538	328	344	454	375
Rye, NT	45	419	349	428	374	304	383	354
Mixed, NT	72	396	391	468	323	319	395	345

*No-tillage input costs included: seed, drilling, chemical termination, and inseason herbicide application. Conventional tillage input costs included: sand fighting (x2), cultivation (x2), rotary hoe, rodweeding, listing, and Treflan incorporation.

Cropping systems and N management

Nitrogen study plot design at Ag-CARES in Lamesa, TX

Treatments

- Cropping systems
 - Conventional tillage, winter fallow (CC)
 - Continuous cotton with rye cover (CCRC)
 - Cotton-wheat-fallow rotation (CWR)
- Nitrogen applications
 - Farmer's practice (120 lb N A⁻¹, FP)
 - FP + 30 lb N A⁻¹ preplant (PPN)
 - FP + 30 lb N A⁻¹ 2-3 weeks post emergence (POS)
 - FP + 30 lb N A⁻¹ pinhead square + 2 weeks (PIN)

Burke and Lewis et al.

Cotton production (2018-2020)

Cronning	Ni				
System	FP	PPN	PEN	PHSN	
	L	AVG			
CC	723	787 (8.9%)	715 (-1.1%)	683 (-5.5%)	727
CCRC	806	938 (16.4%)	965 (19.6%)	857 (6.2%)	891 (23.3%)
CWR	1,134	1,032 (-9.0%)	1,117 (-1.5%)	1,064 (-6.2%)	1,087 (50.4%)
AVG	888	919 (3.5%)	932 (5.0%)	868 (-2.2%)	

2018-2020 averages

Fertilization strategies:

- FP = farmers practices (120 lb N A⁻¹)
- PPN = FP + 20 lb N A^{-1} at preplant
- PEN = FP + 20 lb N A⁻¹ at post emerg. + 2 wks
- PHSN = FP + 20 lb N A⁻¹ at pinhead square + 2 wks

Cropping systems:

- CC = Continuous cotton, conventional tillage (>25 yrs)
- CCRC = Continuous cotton-Rye cover
- CWR = Cotton-Wheat rotation

Burke and Lewis et al.

Gross margins (2018-2020)

Cronning	N				
System	FP	PPN	PEN	PHSN	
	G	AVG			
СС	434	489 (12.7%)	441 (1.6%)	420 (-3.3%)	336
CCRC	489	591 (20.7%)	608 (24.3%)	536 (9.5%)	556 (65.5%)
CWR	609	575 (-5.6%)	610 (0.3%)	587 (-3.6%)	595 (77.1%)
AVG	511	552 (8.0%)	553 (8.2%)	514 (0.6%)	

2018-2020 averages

Fertilization strategies:

- FP = farmers practices (120 lb N A⁻¹)
- PPN = FP + 20 lb N A⁻¹ at preplant
- PEN = FP + 20 lb N A⁻¹ at post emerg. + 2 wks
- PHSN = FP + 20 lb N A⁻¹ at pinhead square + 2 wks

Cropping systems:

- CC = Continuous cotton, conventional tillage (>25 yrs)
- CCRC = Continuous cotton-Rye cover
- CWR = Cotton-Wheat rotation

Nitrogen management (2022-2024)

AG-CARES, Lamesa, TX

Wedge 7 & 8: • Cotton-Wheat-Wedge 1: **Fallow Rotation** • Cont. cotton • Winter fallow Wedge 9: • Cont. Cotton • Rye cover (T)

Nitrogen study plot design at Ag-CARES in Lamesa, TX

Nitrogen Application (UAN-32)

Practice	Pre	June	July	
		(lb N/A)		
Common	30	30	30	
Early	30	50	10	
Late	30	10	50	

Lewis et al.

Nitrogen management (2022 - 2024)

AG-CARES, Lamesa, TX

Fertility Treatment - 2022					Fertili	ty Treatment	- 2023		
	30 lb N/A PP	30 lb N/A PP	30 lb N/A PP			30 lb N/A PP	30 lb N/A PP	30 lb N/A PP	
	30 lb N/A PE	50 lb N/A PE	10 lb N/A PE	Cropping System		30 lb N/A PE	50 lb N/A PE	10 lb N/A PE	Cropping System
Cropping System	30 lb N/A PHS	10 lb N/A PHS	50 lb N/A PHS	Average	Cropping System	30 lb N/A PHS	10 lb N/A PHS	50 lb N/A PHS	Average
Conventional tillage, winter fallow					Conventional tillage, winter fallow				
DP 2141	747	804	718		DP 2143	419	427	389	
FM 2498	760	782	812	771	FM 2498	421	380	405	407
Variety Average	754	<i>793</i>	765		Variety Average	420	404	397	
No-tillage, rye cover					No-tillage, rye cover				
DP 2141	756	806	797		DP 2143	361	406	331	
FM 2498	806	784	782	788	FM 2498	391	357	385	372
Variety Average	781	795	789		Variety Average	376	382	358	
Cotton-Wheat-Fallow Rotation					Cotton-Wheat-Fallow Rotation				
DP 2141	955	977	921		DP 2143	411	424	398	
FM 2498	954	943	946	949	FM 2498	477	494	495	450
Variety Average	955	960	934		Variety Average	444	459	447	
Fertility Average	830	849	829	836	Fertility Average	413	415	401	410

Lewis et al.

Summary

- Cover crop biomass decomposition depends on herbage mass production and environmental conditions.
- Cover crop herbage mass can immobilize soil N early in the growing season.
- Supplemental N fertilization can offset immobilization and increase cotton lint yield.
- Cotton-wheat-fallow rotations may be a better alternative to cover crops in certain regions.

THANK YOU

Joseph A. Burke, Ph.D. Assistant Professor Cropping Systems Agronomy joseph.burke@ag.tamu.edu

